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SUMMARY

A numerical procedure is developed for the analysis of flow in a channel whose walls describe a travelling
wave motion. Following a perturbation method, the primitive variables are expanded in a series with the
wall amplitude as the perturbation parameter. The boundary conditions are applied at the mean surface
of the channel and the first-order perturbation quantities are calculated using the pseudospectral
collocation method. Although limited by the linear analysis, the present approach is not restricted by the
Reynolds number of the flow and the wave number and frequency of the wavy-walled channel. Using the
computed wall shear stresses, the positions of flow separation and reattachment are determined. The
variations in velocity and pressure with frequency of excitation are also presented. © 1998 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Viscous flow over wavy boundaries has not been studied extensively although it is encountered
in several phenomena, e.g. the generation of wind waves on water, the formation of
sedimentary ripples in river channels and dunes in deserts, etc. Physiologists are interested in
the study of blood and urinary flow in order to optimize artificial organs. The problem is
worthy of interest because unsteady fluid dynamics such as this shows the development in time
for viscous–inviscid interactions. There have been studies on flows in sinusoidally varying
channels and pipes by Burns and Parkes [1] under the assumption that the Reynolds number
is small enough for the Stokes approximation to be valid. They obtained a solution by
expressing the streamfunction as a Fourier cosine series, determining the coefficients by
assuming small values of the amplitude. Tsangaris and Leiter [2] improved the study by
expressing the streamfunction as a Fourier series not in the physical plane but in a transformed
plane where the wavy boundary is transformed into a straight one. They later extended the
analysis to higher Reynolds numbers [3]. Steady and unsteady flows through furrowed
channels have been investigated numerically by Sobey and co-workers [4,5], who studied the
effect of Reynolds number and obtained a relation between the geometric parameters and the
Reynolds number for which separation occurs. Fluid flow with and without heat transfer in
wavy channels was calculated by Vajaravelu [6] using a perturbation method for long-wave
channels.
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Although not directly related to the present work, it is interesting to note the studies on
flows in tubes with constrictions. Young and Tsai [7] have investigated, theoretically and
experimentally, the flow patterns in a stenosis (axisymmetric), also determining the Reynolds
number effect on the flow separation. Some interesting experimental insight to the variation in
pressure and shear stresses along a wavy pipe for turbulent non-separated flow was given by
Hsu and Kennedy [8]. A numerical treatment of steady laminar separated flow in pipes with
sinusoidal wall variation is presented by Chow and Soda [9]. The unsteady oscillatory viscous
flow in pipes and channels of slowly varying cross-section has been calculated by Ramachan-
dra Rao and Devanathan [10], Hall [11] and Cheng et al. [12].

Nishimura et al. [13,14] investigated the characteristics of flow in a channel with symmetric
wavy walls. In a flow regime ranging from laminar to turbulent, they studied the variation in
pressure drop and wall shear stresses with Reynolds number. Recently Guzman and Amon [15]
performed direct simulation in an effort to understand the evolution of transition from laminar
to turbulent flow in a converging–diverging channel.

In the present work the shear flow in a channel whose walls are subjected to a wave-like
forced excitation is studied using the pseudospectral collocation method. The formulation of
the problem is presented in Section 2. This is followed by validation of the code and new
results in Section 3.

2. FORMULATION

The non-dimensional forms of the equations of motion for an incompressible fluid in the usual
notation are
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(uj

(t
+um

(uj

(xm

= −
(p
(xj

+
1
R
(2uj

(xm (xm
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where the lengths are non-dimensionalized w.r.t. the mean semi-channel height H, the velocity
components w.r.t. the mean centreline velocity U, the time w.r.t. H/U and the pressure w.r.t.
rU2. The Reynolds number R is based on H and U.

We specify the wall motion through the expressions (see Figure 1)

x2upper wall
=1−owRe{exp[i(l1x1+l3x3−vgt+8p)]}, (2a)

Figure 1. Flow configuration
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Figure 2. Computation of peristaltic motion for R=0.001, ow=0.1, l1=0.25 and vg=4p

x2lower wall
= −1+owRe{exp[i(l1x1+l3x3−vgt)] (2b)

which represent a wave travelling in the wall plane around the position x2=91 with
amplitude ow, wave number vector (l1, 0, l3) and frequency vg; Re(.) denotes the real part of
(.). In the above form the waves of the upper and lower walls are in antiphase so that at any
instant of time the local channel width expands and contracts (symmetrically) around the value
2H. It is relatively simple to extend the study to permit the waves on the two walls to be out
of phase with each other (asymmetrically). It may be noted that an additional parameter,
namely the phase difference 8p, is included in (2a) for the sake of generality. The introduction

Table I. Variation in centreline velocity with Reynolds number for ow=0.1,
l1=0.25 and vg=4p

R=0.001R=0.006R=0.06R=0.6x1 (rad)

−0.1278 −0.12780 −0.1215 −0.1277
−0.0845−0.08440.7854 −0.0832−0.0687

0.01991.5708 0.0360 0.0217 0.0201
2.3562 0.1312 0.1256 0.1245 0.1244

0.1675 0.16760.16760.16133.1416
0.12433.9270 0.1085 0.1230 0.1242

0.0197 0.01994.7124 0.0038 0.0181
5.4974 −0.0915 −0.0858 −0.0847 −0.0846
6.2832 −0.1278 −0.1278−0.1277−0.1215
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Figure 3. Computation of peristaltic motion for R=0.6, ow=0.1, l1=0.25 and vg=4p

of 8p would alter the basic flow significantly. Its role would be important in the study of the
stability of the basic flow. In the present investigation, 8p is taken to be zero.

For small amplitudes of wavy wall excitation the solution for the flow quantities may be
sought as a perturbation from the parabolic velocity profile of the fully developed channel
flow. To a linear approximation in ow we may then write the flow quantities as

um=dm1(1−x2
2)+owũm+O(ow

2 ), m=1, 2, 3, (3a)

p= −2x1/R+owp̃+O(ow
2 ), (3b)

where dij is the Kronecker delta and ũi and p̃ are the periodic parts of the velocity components
and pressure respectively.

Transferring the boundary conditions in (2a, b) to the mean position of the wall by standard
methods [16], we get the boundary conditions for the perturbation ũm as

ũ1(91)= −2Re{exp[i(l1x1+l3x3−vgt)]}, (4a)

ũ2(91)=Re{9 ivg exp[i(l1x1+l3x3−vgt)]}, (4b)

ũ3(91)=0. (4c)

The form of the solution for ũm may then be written as

ũm=
1
2

{ûm(x2) exp[i(l1x1+l3x3−vgt)]+ ûm*(x2) exp[− i(l1x1+l3x3−vgt)]}, (5a)
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p̃=
1
2

{p̂(x2) exp[i(l1x1+l3x3−vgt)]+ p̂*(x2) exp[− i(l1x1+l3x3−vgt)]}, (5b)

where ûm and p̂ are the complex amplitude functions for velocities and pressure respectively;
the superscript asterisk denotes the complex conjugate. Substituting Equations (5a, b) in (1a,
b) and linearizing yields the following equations for ûm and p̂ :

Figure 4. Variation in shear stress at wavy wall for ow=0.1

Figure 5. Variation in shear stress at wavy wall for ow=0.2
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Figure 6. Variation in shear stress at wavy wall for ow=0.3

Figure 7. Variation in separation and reattachment points with Reynolds number

i[−vg+ (1−x2
2)l1]û1−2x2û2= − il1p̂+ (1/R)(−l1

2−l3
2+d2/dx2

2)û1, (6a)

i[−vg+ (1−x2
2)l1]û2= −dp̂/dx2+ (1/R)(−l1

2−l3
2+d2/dx2

2)û2, (6b)

i[−vg+ (1−x2
2)l1]û3= − il3p̂+ (1/R)(−l1

2−l3
2+d2/dx2

2)û3, (6c)

il1û1+dû2/dx2+ il3û3=0. (6d)
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Equations (6a–d) are the linearized equations of motion from which the well-known Orr–
Sommerfeld equations for investigations of fluid flow stability can be derived [17,18]. The
difference between the stability problem and the present investigation is the following
inhomogeneous boundary conditions due to wall excitation:

û1(91)= −2, û2(91)=9 ivg, û3(91)=0. (7)

Equations (6a–d) along with the boundary conditions given by (7) are solved numerically by
two methods. In the first method these equations are decomposed into a system of six
first-order ordinary differential equations as follows. We define the variable zj, j=1, 2, . . ., 6,
as

z1= û1, z2= û; 1, z3= û2, z4= p̂, z5= û3, z6= û; 3, (8)

where the dot above the variable represents differentiation with respect to x2. Then Equations
(6a–d) can be written as

z; 1=z2,

z; 2= [il1R(1−x2
2)+l1

2+l3
2− ivgR ]z1−2x2Rz3+ il1Rz4,

z; 3= − il1z1− il3z5,

z; 4= (1/R)[− (l1
2+l3

2)− il1R(1−x2
2)+ ivgR ]z3− (1/R)il1z2− (1/R)il3z6,

z; 5=z6,

z; 6= il3Rz4+ [l1
2+l3

2+ il1R(1−x2
2)− ivgR ]z5. (9)

Equation (9) with the boundary conditions given by (7) are solved using the Scott and Watts
[19] scheme. This involves a superposition coupled with an orthonormalization procedure with
a variable step Runge–Kutta–Fernberg integration scheme. Each time the linearly indepen-
dent solutions start to lose their numerical independence, the vectors are reorthonormalized
before integration proceeds. The underlying principle of the algorithm is then to piece together
the intermediate (orthoganalized) solutions, defined on the various subintervals, to obtain the
desired solution. The details are given in Reference [20]. Sengupta [21] has also applied a
similar procedure in the study of boundary layer flow over rigid and moving wavy surfaces
using a wave-following co-ordinate system.

The second procedure uses the pseudospectral collocation method and is described by
Canuto et al. [22]. The momentum and continuity Equations (6a–d) in matrix form appear as
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û2

û3
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where the matrix coefficients aij are given by

a11=a22=a33=D2− (l1
2+l3

2)− il1R(1−x2
2)+ ivgR,

a13=a21=a23=a31=a32=a44=0,

a12=2Rx2, a14= − il1R, a24= −RD, a34= − il3R, a41= il1,
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a42=D, a43= il3, (11)

with D the differential operator matrix [22]. For a given number n of collocation points
distributed across the mean surfaces of the channel (from −1 to 1), the matrix equations are
formed using the differential operator matrix. The boundary conditions are applied by
replacing the first and last rows of the first three equations in (10). The main advantage of the
present method over similar perturbation methods, e.g. the streamfunction method of Sobey
[4] Tsangaris and Leiter [2], is that the pressure and the phase information are obtained
directly. For further details see Reference [20]. Both the finite difference method and the
collocation method produced the same results for calculation of flow through a wavy channel
at a Reynolds number of 150.

Numerical experiments [20] indicated that as the Reynolds number is increased, the
amplitude functions vary rapidly close to the boundaries. While using the finite difference
method, sufficient points are needed for discretization of the domain closer to the wall. The
collocation method allows the points to be distributed as a cosine function clustered close to
the boundaries even for a moderate number of collocation points. Moreover, it retains all the
spectral properties, namely the differential equations are solved exactly at the collocation
points and the quantities are infinitely differentiable. Although not investigated in the present
work, Canuto et al. [22] point out that the finite difference method may give rise to phase
errors when compared with the collocation method. The main advantage of using the
collocation method lies in the ease of computation with desired accuracies. The present work
illustrates the use of the collocation method to solve a boundary value problem for which the
finite difference method demands rigorous numerical treatments.

3. NUMERICAL RESULTS

Computations were done to simulate the results of Burns and Parkes [1] on peristaltic motion
at low Reynolds numbers and those of Tsangaris and Leiter [3] at moderate Reynolds
numbers. Various numbers of collocation points were taken across the channel. It was found
that 41 points gave acceptably accurate results for the values of R up to 8000 for which
calculations were carried out. Orzag [23] and Brevdo [24] also recommended this number of
points for finding the eigenvalues in the calculation of stability of channel flows.

3.1. De6elopment of asymmetry at low Reynolds numbers

Burns and Parkes [1] observed that the velocity profiles are symmetric about the x1-axis at
all cross-sections. They also found that the values of u1 are symmetric along the x1-axis about
the location x1=p (Figure 2c)). It may be recalled that they simplified the analysis by
neglecting inertia terms in the equations. This symmetry was not observed by others [3] at low
Reynolds numbers of order unity. The present formulation permits numerical solution for the
peristaltic motion in the limit R�0 while retaining the inertial terms and could be used to
examine this aspect. Computations at R=0.6 revealed the development of asymmetry. Hence
computations were carried out for R=0.06, 0.006 and 0.001. Table I shows the numerical
variation in u1 along the centreline with Reynolds number R. It may be observed that the flow
field gains symmetry as R approaches the value of 0.001, whereas a small value of 0.006 is
sufficient to trigger asymmetry. Figures 2 and 3 show the velocity profile, streamfunction and
velocity and pressure contours at R=0.001 and 0.6 respectively. The distortions due to
asymmetry at R=0.6 are observed clearly in the velocity and pressure contours.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 519–531 (1998)
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Figure 8. Variation in Rcrit with amplitude parameter ow

Figure 9. Variation in pressure at wall for ow=0.2
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Figure 10. Typical velocity amplitude functions for R=120 and l1=1.058

3.2. Effect of R and ow

In this subsection we consider the effect of Reynolds number R and amplitude parameter ow

on the skin friction on a rigid wavy wall. This analysis is useful in itself and also provides
locations of separation and reattachment, if any. Tsangaris and Leiter [3] have also carried out
a similar analysis. Computations were carried out for ow=0.1, 0.2 and 0.3 at R=15, 25, 50,
75, 100, 185, 200, 300, 400, 500, 600 and 700; l1 was taken as 1.0. Figures 4–6 show the
variation in wall shear stress tw along the boundary for ow=0.1, 0.2 and 0.3 respectively. It
may be noted that the calculations are done between the mean surfaces of the channel. The

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 519–531 (1998)
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wall shear stress tw, non-dimensionalized with rU2, is obtained using the equation (Vajaravelu
[6] also followed the same procedure)

tw�wavy wall=
du1

dx2

)
wavy wall

=
du0

dx2

)
91

+ow

(ũ1

(x2

)
91

+ow

d2u0

dx2
2

)
91

ei(l1x1+l3x3−vgt) (12)

Figure 10 (Continued)
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where u0=1−x2
2. It may be observed from Figures 4–6 that the variation in shear stress is a

periodic function of x1 having a phase difference with the variation in wall shape. Its maximum
value lies upstream of the maximum channel cross-section. The amplitude of shear stress along
the wall increases with increase in Reynolds number. Since the flow is two-dimensional and the
wall is rigid, the separation and reattachment points are the locations where the shear stress is
zero. (Separation on a moving boundary would require satisfaction of the MRS criterion [25].)
For ow=0.1 the shear stress variation is negative and the flow is attached for Reynolds
numbers below 600. For R=700 a separated flow region on the channel wall exists. For
ow=0.2 the flow is attached only when R is less than about 150. The value of Reynolds
number for which the flow just separates is called the ‘critical Reynolds number’ [3]. Above
this critical Reynolds number a separation bubble exists. The extent of the bubble increases as
R increases. For ow=0.3 the critical Reynolds number is about 25 as shown in Figure 6. Figure
7 shows the positions of separation and reattachment points for ow=0.1, 0.2 and 0.3 for the
wavy channel. The variation in critical Reynolds number with amplitude parameter is shown
in Figure 8. The variation compares well with the correlation obtained using the experimental
data of Sobey [4]. The results of Tsangaris and Leiter [3] are also plotted in the figure. The
agreement between the experimental data and the present results may be attributed to the fact
that there are no approximations involved in the formulation, except for linearization, and
accurate solutions have been obtained using the spectral collocation method.

3.3. Variations in wall pressure and 6elocity with frequency

In the present formulation the oscillatory pressures are computed directly. The variations in
oscillatory pressure at the wall along x1 for ow=0.2 and R=15, 25, 50, 75, 100, 200, 300, 400,
500 and 600 are shown in Figure 9. It is interesting to note that the amplitude of pressure
decreases with increase in Reynolds number. It follows from the formulation that the velocity
amplitude functions û1 and û2 are complex quantities and for the sake of completeness the real
and imaginary parts of û1 and û2 across the channel (û1r, û1i; û2r, û2i) are shown in Figures
10(a)–10(d) with vg as parameter. The chosen value of R lies in the Reynolds number range
of blood flows in arteries.

4. CONCLUSIONS

In the present investigation, using a simple perturbation approach and the collocation method,
the incompressible flow through a wavy-walled channel is studied numerically. The evolution
of flow asymmetry in a peristaltic motion even for a very low R=0.006 is captured. Although
limited by the linear analysis, the present procedure is a useful tool for analysis of complex
unsteady flow in a wavy channel. The separation criterion relating the critical Reynolds
number Rcrit and the amplitude parameter ow as obtained by the present method is in
conformity with other known methods. Further, the numerical procedure allows a variety of
basic unsteady periodic flows to be computed for which the stability characteristics may be of
interest.
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